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Abstract
Very asymmetric mixtures of hard spheres naturally arise in the modellization
of colloidal dispersions. Effective potentials have emerged as a powerful tool
for describing these systems and have often been employed to extract the phase
diagram in both the additive and nonadditive cases. However, most theoretical
investigations have been carried out by means of mean-field-like approaches, so
their quantitative accuracy remains to be assessed. Here we employ previously
determined effective potentials for nonadditive hard-sphere mixtures to study
the fluid–fluid phase transition by the hierarchical reference theory (HRT),
which is designed to take realistically into account the effects of long-range
fluctuations on phase separation. Fluid–solid equilibrium is addressed by
supplementing HRT with thermodynamic perturbation theory for the solid
phase. We apply this approach both to a potential with adjustable nonadditivity
parameter (Louis et al 2000 Phys. Rev. E 61 R1028) and to the Asakura–
Oosawa (AO) potential, which represents an extreme case of nonadditivity. Our
results for the phase diagram, including modified hypernetted chain (MHNC)
calculations, are compared to those of other liquid-state theories and are found to
agree nicely with available simulation data. Unlike commonly adopted liquid-
state theories, HRT is capable both of getting arbitrarily close to the fluid–fluid
critical point, and of giving nontrivial critical exponents. In particular, the
fluid–fluid coexistence curve is much flatter than that obtained via perturbation
theory, in agreement with a recent finite-size scaling Monte Carlo analysis of
the AO model.
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1. Introduction

During the past years the hard-sphere (HS) system has been studied in detail: this simple
model is ideally suited for the study of phenomena in which the hard core of the potential is the
dominant factor and it represents a standard reference system for determining the properties of
realistic models. Now its phase diagram is well understood: a pure hard-sphere fluid does not
undergo a liquid–gas transition, but shows a well defined freezing transition driven by purely
entropic effects [1, 2]. Binary hard-sphere mixtures represent a very important system either
for a similar reference role for binary mixtures of simple fluids or as a model for mixtures of
colloids and polymers and other colloidal systems (see for example [3]).

One of the most studied models is that of additive HS where the cross diameter is
σ12 = (σ1 + σ2)/2, σ1 and σ2 being the diameters of the two species of particles. Such a
mixture of large and small particles exhibits an interesting competition between demixing
into dilute and concentrated suspensions of large particles, driven by the osmotic depletion
effect [4], and freezing into an ordered crystalline phase. Monte Carlo simulations [5] of binary
additive hard-sphere mixtures with size ratio q = σ2/σ1 � 0.2 have shown that the demixing
transition is pre-empted by freezing of a low-concentration disordered ‘fluid’ phase into an fcc
crystal of large particles. In that paper the authors also determine an effective one-component
description: the derivation of an effective potential is in principle a powerful tool for studying
the behaviour of an asymmetric binary mixture, at least for size-ratios q � 0.3. For such a
size ratio many-body interactions are not very important [6], while at the same time a direct
confirmation of the fluid–fluid demixing transition by computer simulations is difficult because
of slow equilibration problems.

On the other hand, experiments on sterically or charge-stabilized binary ‘hard-sphere’
colloids are shown to exhibit nonadditive behaviour, i.e. σ12 = (σ1 + σ2)(1 + �)/2 where the
parameter of nonadditivity � can be positive or negative (see e.g. [7, 8]). An extreme case
of nonadditivity was studied by Widom and Rowlinson, who considered σ1 = σ2 = 0 and
σ12 > 0 [9]. For this system they showed the presence of a demixing transition. Another
example is the simplest Asakura–Oosawa (AO) model of colloid–polymer mixtures, described
in section 4. This model describes a binary mixture of polymers and colloids: the polymers are
assumed to be noninteracting; however, they are excluded from the colloids to a certain centre-
of-mass distance. Louis et al [7] propose that the effect of a wide variety of extra interactions
on depletion potentials can be understood by a simple mapping onto a nonadditive HS mixture
model. In [10] the authors show that the formal procedure of integrating out the degrees of
freedom of the small spheres in a binary hard-sphere mixture works equally well for nonadditive
as it does for additive mixtures. Using a density-functional treatment originally developed for
additive hard-sphere mixtures they obtain the zero-, one-, and two-body contributions of the
effective Hamiltonian. Even a small degree of positive nonadditivity of the diameter σ12 has
significant effects on the shape of the depletion potential and on the phase behaviour, as it
might drive the demixing transition from metastable to stable. Moreover, Vliegenthart and
Lekkerkerker [11] have shown that the fluid–fluid critical point of many one-component fluids
occurs when the reduced second virial coefficient is approximately equal to 1.5. This works
well for the depletion potential simulations of Dijkstra et al [5, 12, 13], suggesting that this
accurate criterion can also be used to predict the effect of nonadditivity on fluid–fluid phase
separation [7].

Although the qualitative phase behaviour of highly asymmetric binary mixtures as a
function of q and � is known (see e.g. [4, 7, 10, 14]), theoretical studies of these systems
have been carried out mainly by means of mean-field-like approaches, such as standard
thermodynamic perturbation theory. As already pointed out in previous studies [12], this
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can entail a considerable degree of quantitative inaccuracy, especially as far as the fluid
region of the phase diagram is concerned. The main purpose of this paper is to employ
the effective potentials previously obtained by other authors to investigate fluid–fluid phase
separation by means of the hierarchical reference theory (HRT) [15]. This renormalization-
group based method has already proved quite reliable in describing the phase diagram of
simple one- and two-component fluids interacting via Lennard-Jones-like potentials as well as
Coulombic fluids and spin systems, so it is indeed tempting to test its accuracy for a different
kind of interactions such as the effective potentials considered here. HRT is designed to take
realistically into account the effects of long-range fluctuations on phase separation,giving more
accurate results than commonly adopted liquid-state theories. We also address the fluid–solid
transition by supplementing HRT with thermodynamic perturbation theory for the solid phase:
the rationale for doing so is that, as pointed out before [12], thermodynamic perturbation
theory is expected to be much more accurate for the solid than for the fluid. Moreover,
long-wavelength fluctuations play a minor role in a strongly first-order transition like the
fluid–solid one.

We first investigated a nonadditive, asymmetric HS mixture for very different size ratios
and different values of the nonadditivity parameter as modelled by the pair interaction obtained
in [4]. We then turned to an extreme instance of a nonadditive HS mixture, namely the
AO model. Our results for the phase diagram were compared with those obtained from
thermodynamic perturbation theory [4, 12] and MC simulations [12].

The overall qualitative picture that emerges from the present study agrees with that
expected on the basis of previous investigations: specifically, positive nonadditivity is predicted
to stabilize the depletion-induced fluid–fluid demixing transition with respect to freezing,while
decreasing the size ratio q has the opposite effect. However, significant quantitative differences
appear: for instance, in the AO case, if thermodynamic perturbation theory is used also for
the fluid phases, the crossover from stable to metastable fluid–fluid phase separation is located
at q � 0.31 [12], while the HRT prediction is q � 0.45, in closer agreement with the MC
result q � 0.4 [12]. Moreover, unlike standard liquid-state theories, HRT gives nonclassical
critical exponents. As a consequence, the curvature of the fluid–fluid coexistence curve in the
neighbourhood of the critical point is accurately reproduced, as shown by the comparison of
our results with a recent MC study supplemented by finite-size scaling [16, 17].

We find these results very encouraging, especially in view of the fact that the closure
relation that we used in our HRT scheme is tailored to Lennard-Jones-like potentials rather
than to the effective potentials describing depletion-induced interactions in colloidal systems.
In particular, no special care was adopted to accurately take into account the effect on the
correlations of the narrow and deep attractive well which characterizes the latter class of
potentials and accounts for the main qualitative differences with respect to atomic and molecular
fluids [18]. Nevertheless, the thermodynamics obtained within our approach appears to be quite
accurate.

Besides HRT, we also performed few calculations by the modified hypernetted chain
(MHNC) integral equation. In a previous study [19] we concluded that the MHNC gives quite
a good description of the fluid–fluid coexistence region of highly asymmetric additive hard-
sphere mixtures described by an effective pair interaction (see also [20]). However, determining
the phase diagram by MHNC is quite cumbersome, so we used this integral equation just to
determine the spinodal curves of nonadditive mixtures, in order to locate the critical point and
estimate the coexistence region.

This paper is organized as follows: first of all, in section 2 we present the theoretical
tools we utilized to study nonadditive hard-sphere mixtures. In section 2.1 we present a
brief introduction to the HRT. In section 2.2 we present the perturbation theory that we used
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to determine the chemical potential and the pressure of the solid phase. In section 2.3 we
introduce the modified hypernetted chain integral equation.

Section 3 deals with a general model for nonadditive, asymmetric HS mixtures. In
section 3.1 we introduce the pair potential that we used to model the interaction between
large spheres. In sections 3.2 and 3.3 we describe our results for the phase diagram obtained
respectively by MHNC and HRT and compare them to those obtained by means of other
fluid-state theories and MC simulations.

In section 4 we turn to the AO model. In section 4.1 we recall the AO model and the form
of the AO pair interaction. In section 4.2 we assess the accuracy of the HRT to study the phase
diagram of the AO model, comparing our results with MC simulations and perturbation theory
results. In section 4.3 we discuss the effects of critical fluctuations on the demixing transition,
specifically on the coexistence curve, the reduced compressibility, and the correlation length.
Finally in section 5 we summarize our study and draw our conclusions.

2. Theory

2.1. Hierarchical reference theory

The HRT approach has already been discussed in detail in previous work [15, 21, 22], so here
we give just a brief summary.

We consider a fluid of particles interacting via a spherically symmetric potential v(r). We
assume that v(r) can be split into the sum of a singular contribution vR(r) which accounts
for the short-range repulsion between the particles, and a longer-ranged tail w(r) which may
induce fluid–fluid phase separation. The properties of the fluid interacting via the repulsive
potential vR(r) alone are considered as known, so that it acts as a ‘reference’ or unperturbed
system. For a hard-core plus tail potential like those considered in this work, the natural choice
of the reference system is the hard-sphere fluid. The HRT differs from the conventional liquid-
state approaches in the way the attractive perturbation is dealt with. In order to accurately
describe the long-range fluctuations that are important in criticality and phase separation, the
attractive part of the interaction is switched on gradually by introducing a Q-system with a
modified interaction vQ(r) = vR(r) + wQ(r), where wQ(r) is defined in such a way that its
Fourier transform w̃Q(k) coincides with that of the original attractive potential w̃(k) for k > Q,
and vanishes for k < Q. The introduction of such an infra-red cut-off in the interaction is
physically equivalent to inhibiting fluctuations with characteristic lengths L > 1/Q. If Q is
made to evolve from Q = ∞ down to Q = 0, the Q-systems evolve from the reference system
by acquiring fluctuations of longer and longer wavelengths. The fully interacting system
is recovered as the Q → 0 limit of such a process. Only in this limit are true long-range
correlations allowed to develop in the fluid, if it is close to a critical point. The equation
for the corresponding evolution of the Helmholtz free energy AQ of the Q-systems can be
determined exactly and is related to the perturbation in momentum space �(k) = −βw̃(k)

with β = 1/(kBT ), and to the direct correlation function of the Q-system in momentum space
cQ(k). The evolution equation for the Helmholtz free energy is most easily formulated in terms
of a modified free energy AQ and direct correlation function CQ(k) defined as

AQ = −β AQ

V
+

1

2
ρ2

[
�(k = 0) − �Q(k = 0)

] − 1

2
ρ

∫
d3k

(2π)3

[
�(k) − �Q(k)

]
(1)

CQ(k) = cQ(k) + �(k) − �Q(k), (2)

where V is the volume of the system. The HRT equation for AQ is then
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∂AQ

∂ Q
= − Q2

4π2
ln

(
1 − �(Q)

CQ(Q)

)
. (3)

For Q → 0, i.e. at the end of the evolution process, the modified quantities AQ , CQ yield
respectively the true free energy and direct correlation function of the fully interacting system.
For Q = ∞, AQ and CQ are nothing but the mean-field free energy and the random-phase
approximation direct correlation function in the presence of the full perturbing potential �(k).
These play the role of the initial conditions of the evolution equation (3), which then describes
how the mean-field estimate for the free energy is affected by the inclusion of fluctuations.
This equation is manifestly not closed, since the evolution of the free energy AQ is related
to the direct correlation function CQ(k), which is itself unknown. In fact, equation (3) is
just the first equation of an infinite hierarchy for the direct correlation functions of increasing
order. A point of crucial importance in order to implement a viable HRT scheme is then
supplementing equation (3) with a closure relation involving CQ(k). Here, as well as in the
previous applications of HRT, we have adopted for CQ(k) an approximate form inspired by
standard perturbative liquid-state theories:

CQ(k) = cHS(k) + λQ�(k) + GQ(k). (4)

In the above expression, cHS(k) is the Fourier transform of the direct correlation function of
the hard-sphere reference system, which can be accurately represented by the Verlet–Weis
parametrization [23], while λQ and GQ(k) are a priori unknown, state-dependent quantities
to be determined on the basis of two constraints related respectively to the long- and the
short-range behaviour of the correlations. Specifically, the amplitude λQ of the perturbation
is determined in such a way that each Q-system satisfies the compressibility sum rule which
expresses the isothermal compressibility in terms of the zero-wavevector value of the structure
factor, or equivalently of the direct correlation function in momentum space:

CQ(k = 0) = ∂2AQ

∂ρ2
, (5)

where ρ is the number density of the fluid. The function GQ(k) is instead chosen so that
the radial distribution function gQ(r) of each Q-system satisfies the condition gQ(r) = 0 for
0 < r < σ , σ being the hard-sphere diameter. This requirement stems from the singular
interparticle repulsion due to the reference part of the interaction. In terms of the direct
correlation function cQ(k) it amounts to∫

d3k
(2π)3

exp[ik · r]

[
1

ρcQ(k)
+ 1

]
= ρ 0 < r < σ. (6)

Implementing the thermodynamic consistency condition (5) in equation (3) gives a partial
differential equation (PDE) for AQ , which involves both the first partial derivative of AQ

with respect to Q, and its second partial derivative with respect to the density ρ. This PDE,
supplemented by suitable initial (i.e., for Q = ∞) and boundary (i.e., for low and high
density) conditions, is integrated numerically down to Q = 0. The details of the procedure
have been given elsewhere [22]. Here we would like to recall the two approximations entailed
by the scheme outlined above, since they can be relevant for the applications considered in
this work. First, equation (4) assumes that the direct correlation function of the fluid depends
linearly on the perturbation �(k). This ansatz is most adequate when the perturbation range
is much longer than that of the reference part of the interaction, i.e. of the particle size. For
short-range perturbations, nonlinear contributions which are not accounted for by the present
closure are expected to become important [24]. A more technical but at least equally relevant
point is related to the implementation of the core condition (6). Following a widely adopted



776 F Lo Verso et al

procedure in liquid-state theory, the inverse Fourier transform of the function GQ(k) has been
expanded in series of Legendre polynomials in the interval 0 < r < σ , and the series has
been truncated after a finite number of terms (typically five). The evolution equations for
the expansion coefficients were then determined by differentiating the integral equation (6)
for cQ(k) with respect to Q, and subsequently projecting it on the polynomials used in the
expansion. However, the resulting equations are coupled to the evolution equation (3) for
the free energy, and this makes them difficult to handle. Therefore, as described in detail
in [21, 22], in the derivative of cQ(k) with respect to Q the long-wavelength contributions
containing the isothermal compressibility of the Q-system were disregarded. Physically this
amounts to decoupling the short- and the long-range evolution of the correlations. Again, this
approximation is fully justified for long-range perturbations, where the short- and the long-
range part of the correlations are mainly affected by the reference and the perturbation term
respectively, but becomes more problematic for short-range interactions where the interplay
between excluded-volume and cohesion effects is much stronger. We will return to this point
in section 4.

Finally we observe that, in previous applications of HRT, fluid–fluid phase separation was
driven by the temperature T via the factor β that determines the strength of the perturbation
�(k) in equation (3). Since in the present work the potentials that we will be considering refer to
athermal systems one can set β = 1. In this case phase separation is governed by the density of
the small particles responsible for the depletion interaction between larger particles. We remark
that state dependent pair potentials arise from coarse-graining procedures in condensed matter
physics. In principle, as discussed in detail in [25], the particular coarse-graining procedure
utilized to determine the effective pair interaction is important to determine correctly physical
properties of interest. The McMillan–Mayer procedure to trace out the smaller component in
solution in the framework of the semi-grand ensemble maps the two-component mixture onto
a useful effective one-component description (see for example the discussion about the AO
model in [25]). In particular, the effective partition function obtained, as long as the fugacity
of the small spheres is fixed as an external parameter, can be interpreted as that of an effective
one-component system, not state dependent. Then in both cases (temperature and density of
the small spheres) the quantity which sets the interaction strength appears in equation (3) as a
parameter. This does not imply any substantial change in our treatment.

2.2. Perturbation theory

In order to determine the fluid–solid phase boundary, we need the free energies of both
the fluid and solid phases. While the free energy of the fluid has been obtained by HRT,
for the free energy of the solid we have resorted to standard thermodynamic perturbation
theory. This can be regarded as the application to a solid reference system of the perturbative
expansion in powers of the inverse temperature β originally developed for a fluid by Barker
and Henderson [26]. The Helmholtz free energy per unit volume As/V of a solid interacting
via a hard-sphere plus tail potential v(r) = vR(r) + w(r) then reads

β As

V
= β AHS

s

V
+

1

2
βρ2

∫
d3r gHS

s (r) w(r) +
β A2

V
+ O(β3), (7)

where AHS
s and gHS

s are the Helmholtz free energy and the radial distribution function of the
hard-sphere solid averaged over the solid angle, and β A2/V denotes the second-order term in
β. Solid-state perturbation theory has already been adopted many times for studying fluid–solid
equilibrium [27] and how this transition is affected by the range of the interaction [12, 28, 29].
Use of the truncated expansion (7) for the solid phase has proved to be quite reliable, actually
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considerably more so than in the fluid region [12]. Following previous investigations [12, 28],
equation (7) has been truncated at the second-order term, which has then been estimated by an
approximation suggested by Barker and Henderson [26], namely

β A2

V
� −1

4
β2ρ2χHS

s

∫
d3r gHS

s (r)w2(r), (8)

where χHS
s is the compressibility of the hard-sphere solid divided by the ideal-gas value. We

observe that for the athermal systems considered in this work βw(r) does not depend on
temperature, so that β does not appear explicitly in the expansion. The Helmholtz free energy
of the hard-sphere crystal needed in equation (7) has been determined by integrating with
respect to density the equation of state given by Hall [30], which expresses the compressibility
factor Z = β P/ρ of the hard-sphere solid as an expansion in powers of the relative deviation
of the density from its value at close packing ρcp = √

2σ−3. As in [31], the integration
constant is given by the value of AHS

s at a density ρ = 0.736 ρcp, for which we have used the
result, also reported in [31], β AHS

ex /N = 5.918 89, N being the particle number, determined
via numerical simulation by Frenkel for the excess free energy per particle with respect to
the ideal gas. The radial distribution function of the hard-sphere solid has been represented
by the parametrization of Kincaid and Weis [32]. The potentials considered here are strictly
vanishing beyond a certain distance, so the integrals involving gHS

s (r) in equations (7) and (8)
are actually restricted to a finite interval. Fluid–solid equilibria were determined by equating
the pressure and the chemical potential of the fluid phase determined by HRT with those of
the solid phase obtained from equations (7), (8).

2.3. Modified hypernetted chain integral equation

As specified above, we studied the structure and the thermodynamical behaviour of nonadditive
mixtures also by means of the modified hypernetted chain integral equation (MHNC). In this
way we could test the efficiency of the MHNC closure for describing the properties of deep
and narrow potentials, with respect to MC simulation results or other liquid-state theories
previously utilized to study this system. In addition, we checked the agreement between
MHNC closure and HRT theory.

The MHNC equation is in general accurate for describing the structure and the
thermodynamical behaviour of systems described by repulsive interactions as well as when
an attractive contribution to the interaction is present [33, 34]. Recently, it has been verified
that this theory is also remarkably accurate for ultrasoft-core potentials [35]. This equation
starts from an exact relation [36], obtained from a cluster expansion, which connects the radial
distribution function (rdf) g(r) to the interparticle potential v(r):

g(r) = exp[−βv(r) + h(r) − c(r) + E(r)]. (9)

h(r) = g(r) − 1 and c(r) are the pair and the direct correlation function, respectively. c(r) is
related to h(r) by the Ornstein–Zernike equation. E(r), called the bridge function, represents
the sum of an infinite number of terms, the so called elementary graphs in the diagrammatic
analysis of the two-point function. The exact bridge function is not known for any system.
However, for a fluid of hard spheres an approximate bridge function can be obtained by resorting
to known parametrizations of g(r). Therefore, in the MHNC scheme the bridge function of
the system with potential v(r) is replaced by the bridge function EHS(r) of a fluid of hard
spheres of suitable diameter d . To optimize the choice of the hard-sphere bridge function,
which depends on the parameter d , the free energy is minimized [37]; this request is satisfied
when ∫

dr [g(r) − gHS(r, ηHS)]
∂ EHS(r, ηHS)

∂ηHS
= 0. (10)
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Here ηHS = π
6 ρd3. In order to obtain EHS, we utilized the Verlet and Weis (VW) [23]

parametrization of the rdf gHS(r) of the hard-sphere fluid, based on the Percus–Yevick (PY)
equation with a correction which incorporates thermodynamical consistency through the
Carnahan–Starling state equation [36]. This together with equations (9), (10) gives a closed
set of equations which are solved by a standard iterative method.

3. Nonadditive HS mixtures

3.1. Introduction

Consider a binary system of HS with distances of closest approach σαβ (1 � α, β � 2) such
that σ11 = σ1 and σ22 = σ2, where subscripts 1 and 2 denote species 1 and 2 and

σ12 = 1
2 (σ11 + σ22)(1 + �), (11)

where the nonadditivity parameter � can be positive or negative, the case � = 0 corresponding
to additive HS. For a fixed number density ρ2 of the small spheres, the nonadditivity can be
introduced in two ways: fixing σ12 and varying � by changing the small-particle diameter, or
fixing the small-particle hard-core diameter and varying � by changing σ12. Notice that in the
first case [7], on increasing the positive nonadditivity, the repulsive ‘bump’ at long r , r being
the distance between two big spheres in solution, decreases and the potential tends toward the
ideal Asakura–Oosawa limit. In this case the contact value remains relatively constant. In
contrast, on increasing negative nonadditivity the contact value increases markedly, leading
to strongly repulsive interactions. In the second case the dominant effect on depletion pair
potentials is to shift them along r [7]; both positive and negative nonadditivity change the well
depth at contact significantly. Indeed, changing σ12 changes the depletion layers of the two
big particles and then the amount of volume doubly excluded when two big particles approach
each other.

In this section we concentrate on positive nonadditivity, introduced in the second way.
According to the procedure proposed by Louis et al [7], nonadditivity can be used to mimic
further interactions between asymmetric spheres with respect to the depletion one, by mapping
the effect of this extra interaction onto an effective nonadditive HS diameter. To obtain the
effective HS diameter, the well known Barker–Henderson approach or a similar procedure can
be used [38]. We then decided to search for a suitable theoretical method to study extensively
the phase diagram of these asymmetric HS mixtures for very different size ratios and for
different values of the nonadditivity parameter. In particular, we started from a description of
this system in terms of a pair interaction as discussed in [5, 13]. The procedures used in the
above-mentioned reference have been generalized by Louis et al to derive an effective pair
potential between large spheres in a nonadditive mixture [4]:

βveff(r) =




∞ r < σ1

−3ηr
2(1 + qeff)

2q3

{
h(r)2 + ηr

2[4h(r)2 − 3qh(r)]

+ (ηr
2)

2[10h(r)2 − 12qh(r)]
}

σ1 � r � σ1(1 + qeff)

0 r > σ1(1 + qeff)

(12)

where ηr
2 is the packing fraction of the small spheres in the reservoir, the effective size ratio

qeff is related to the size ratio q = σ2/σ1 by qeff = q + � + �q , and the function h(r) is given
by h(r) = (1 + qeff)−r/σ1. The term linear in ηr

2 is the purely attractive Derjaguin form of the
Asakura–Oosawa potential with effective size ratio qeff , while the higher-order terms describe
the partially repulsive effects of the correlation-induced layering of the small spheres around
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the large spheres. Increasing � at fixed ηr
2 deepens the attractive well, while the correlation-

induced repulsive barrier remains approximately the same. Notice that this treatment is
based on an approximation for the depletion potential; i.e. a truncated virial expansion of the
Derjaguin approximation to the depletion potential for additive HS mixtures [39] is employed
with an effective size ratio qeff = q(1 + �) + � to take into account the nonadditivity.

Starting from this expression, by employing an effective one-component perturbation
theory Louis et al calculated the fluid–solid coexistence curves for q = 0.2 and several values
of �. Moreover, they calculated the fluid–fluid spinodal curves for the same value of the
parameters using a two-component perturbation theory,where the perturbation vHS

12 [r/(1+λ�)]
is the hard-sphere potential between species 1 and 2 with a coupling parameter λ which varies
from zero to unity so as to switch on the nonadditivity. The spinodal curve for q = 0.2 and
� = 0.033 agrees nicely with that given by an approximate equation of state due to Barboy
and Gelbart [40], and is consistent with the result of the numerical solution of the Ballone–
Pastore–Galli–Gazzillo (BPGG) [41] integral equation, at least for low values of η1. Both
of these approaches are not based on an effective potential for the one-component system,
but refer directly to the two-component hard-sphere mixture. It has been shown that even a
small degree of positive or negative nonadditivity can change the global topology of the phase
diagram.

In [14] Dijkstra, by performing Gibbs ensemble MC simulations of the true mixture for
a size ratio q = 0.1 and varying degrees of nonadditivity, showed the existence of a fluid–
fluid demixing transition in binary nonadditive asymmetric mixtures. She also compared the
results with the theoretical binodals obtained from the equation of state proposed by Barboy
and Gelbart [40]. It is found that there is reasonable quantitative agreement for sufficiently
large values of nonadditivity parameter, � � 0.3. Upon decreasing the nonadditivity both the
theoretical results and, to a larger degree, the simulation ones show that the fluid–fluid phase
transition shifts to higher pressures and becomes narrower; for sufficiently small nonadditivity
the fluid–fluid demixing is not present, at least at packing fractions low enough for the fluid
phases to be actually stable against freezing.

In the next two subsections we present our investigation of the system described by the
effective pair interaction (12).

3.2. MHNC results

A first analysis of the demixing transition has been performed by using the MHNC closure.
In figure 1 some results obtained by this method are shown, namely the spinodal curves for
a size ratio q = 0.2 and several values of the nonadditivity parameter (� = 0.25, 0.2, 0.1).
Notice that on increasing the nonadditivity parameter for a fixed value of the packing fraction
of the small spheres, the width of the well potential and its depth increase, i.e. the strength
of the depletion force increases. Conversely, the height of the bump in the repulsive potential
remains the same and it only moves toward higher r -values. These properties can be inferred
from figures 2–4. In the figures we show the interaction potentials corresponding to the q and
� values of the three curves in figure 1. The parameter ηr

2 for each curve is chosen to be in the
neighbourhood of the critical value.

As shown by the spinodal curves, the critical packing fraction for the big spheres is
approximately stable with respect to a change in the nonadditivity parameter, whereas the
critical packing fraction for the small spheres increases by reducing the nonadditivity parameter.
As a side remark, we notice that the curves look rather flat and wide.

We have compared our results with the predictions by Louis et al [4], who determined
the spinodal curves of nonadditive HS mixtures for a given value of q , q = 0.2, and a set of
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Figure 1. Spinodal curves (ηr
2 versus η1) as

obtained from the MHNC integral equation for
q = 0.2, � = 0.25, 0.2, 0.1. Lines are simply
guides to the eye.
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Figure 2. Effective big-sphere pair potential
of a binary hard-sphere mixture with size ratio
q = 0.2, ηr

2 = 0.12, � = 0, 0.1.

� values by the two-component perturbation theory mentioned in section 3.1. The qualitative
behaviour of the spinodal curves as a function of the nonadditivity parameter � shown in
figure 1 is similar to that of figure 2 in [4]. A quantitative comparison is shown in figures 5
and 6 for � = 0.25 and 0.1 respectively. In both cases, the MHNC with the effective two-
body potential (12) gives critical values for η1 and ηr

2 that are lower than those given by
two-component perturbation theory. The MHNC spinodals are also considerably flatter and
wider. Although additive mixtures will not be discussed in this paper, we remark that in
the case of additive hard-sphere systems we found a similar trend of the MHNC result with
respect to simulation predictions by Dijkstra et al [5], i.e., an underestimation of η1 and ηr

2 at
the critical point. We have to remark that this is not a definitive test of the accuracy of MHNC
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to study very narrow potentials due to the approximate character of the theory utilized in [4].
To have a definitive, conclusive check we would like to compare our MHNC results both to
MC simulations and HRT. The comparison with HRT results is presented in the next section.

3.3. HRT results

HRT has been applied to the potential veff(r) in order to obtain the fluid–fluid and the fluid–solid
phase diagrams as well as to have precise quantitative information concerning the stability of
the fluid–fluid coexistence curve with respect to freezing as � is changed.

For the systems considered here, fluid–fluid coexistence occurs for values of ηr
2 larger

than the critical value ηr
2c. The curves at constant ηr

2 correspond to the isotherms of a thermal
system. We recall that HRT gives the correct convexity of the free energy even in the presence
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Figure 5. Fluid–fluid (HRT) and fluid–solid (HRT and solid perturbation theory) transition lines
of a nonadditive hard-sphere mixture, q = 0.2, � = 0.25. In the figure we also present our MHNC
integral equation results for the spinodal curve and the results obtained by Louis et al [7] by means
of perturbation theory.
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Figure 6. Fluid–fluid (HRT) and fluid–solid (HRT and perturbation theory) transition lines of a
nonadditive hard-sphere mixture, q = 0.2, � = 0.1. In the figure we also present a few MHNC
integral equation results for the spinodal curve and the results obtained by Louis et al [7] by means
of perturbation theory. The legend is the same as in figure 5.

of phase coexistence [42]. The unstable region of negative compressibility is suppressed by the
inclusion of long-wavelength fluctuations. As a consequence, the ‘isotherms’ in the pressure–
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Table 1. Critical values of the packing fraction of the big spheres η1 and of the small spheres
in the reservoir ηr

2 for q = 0.2 and two different values of the nonadditivity parameter � for the
model potential (12). In the case of stability of the fluid–fluid phase transition we also calculate
the value of the packing fraction of the triple point ηr

2t and η1t.

� η
r,crit
2 ηcrit

1 ηr
2t η1t

0.25 0.025 0.225 0.028 0.421
0.1 0.086 0.219 — —

density plane do not display the van der Waals loop characteristic of mean-field theory, but
a rigorously flat interval which immediately gives the amplitude of the coexistence region.
Similarly, in the pressure–chemical potential plane, the isotherms do not show any ‘bow’, but
the high- and low-density branches of the curve for fixed ηr

2 end at their intersection point,
which satisfies the condition of mechanical and chemical equilibrium between the coexisting
phases. As far as the fluid–solid transition is concerned, for any given value of ηr

2 we first
found the values of the pressure P and chemical potential µ at coexistence by determining
the intersection of the fluid and solid branches of the equation of state in the P–µ plane,
and then obtained the corresponding packing fractions ηf

1, ηs
1 on each branch. As specified in

section 2.2, the pressure and chemical potential of the solid were determined by thermodynamic
perturbation theory. Unlike HRT, this approach does not ensure the convexity of the free energy
as a function of the density. In fact, for the lowest packing fractions η1 that we considered on
the solid branch, the compressibility of the solid may become negative. This unphysical part
of the solid branch was removed before determining the intersection with the fluid one.

In figure 5 we present the fluid–fluid and fluid–solid coexistence curve, ηr
2 versus η1, as

obtained from HRT with the core condition for � = 0.25 and q = 0.2. In this case the
fluid–fluid phase transition is stable with respect to the fluid–solid one. In figure 6 we present
the phase diagram calculated by means of HRT for a case in which the fluid–fluid transition
is metastable with respect to freezing, namely � = 0.1, q = 0.2. By comparing these results
with the MHNC data for the spinodal curve already presented in section 3.2, we see that in both
cases the MHNC spinodal qualitatively locates the coexistence region, but it underestimates
the critical packing fraction η1c of the big spheres with respect to HRT. On the other hand, the
critical packing fraction ηr

2c of the small spheres in the reservoir is in close agreement with
that of HRT.

In both of the cases investigated, the HRT prediction about the stability (� = 0.25) or
metastability (� = 0.1) of the fluid–fluid transition with respect to freezing is in agreement with
the results of Louis et al [4], also reported in the figures. However, considerable quantitative
differences appear. In table 1 we showed the critical values of the packing fraction of the big
spheres and small spheres in the reservoir for q = 0.2 and two different values of �. The HRT
value of ηr

2c is 25% (� = 0.1) and 50% (� = 0.25) smaller than that of [4]. This is not very
surprising, in view of the fact that these approaches differ not only because of the different
liquid-state theories employed, but also because of the different methods used to deal with the
interactions of the systems: as pointed out before, in [4] the fluid–fluid transition was studied
by applying perturbation theory directly to the binary mixture of nonadditive spheres, while
here HRT is applied to the effective one-component fluid described by the potential (12). The
same consideration holds when comparing the results of [4] with the MHNC ones reported
in the previous subsection. We also note that the HRT coexistence curve is much flatter than
the spinodal given by two-component perturbation theory, and we expect this also to be true if
the coexistence curve predicted by the latter approach is compared to that of HRT. In fact, in
mean-field theories the coexistence curve close to the critical point is described by the same
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‘classical’ critical exponent β = 0.5 as the spinodal, while HRT gives a value of β which is
smaller than the classical result, and in much better agreement with the generally accepted
value β � 0.324 (see section 4.3).

As a further check of our results, we compared the HRT prediction for the fluid–fluid
critical point with the MC simulation by Dijkstra et al [14] of a binary hard-sphere mixture
for a size ratio q = 0.1 and varying degree of nonadditivity. As we said in the introduction,
the authors compared these results with the theoretical binodals obtained from the equation
of state proposed by Barboy and Gelbart [40]. We then determined via HRT the values of the
total critical packing fraction of the big and small spheres, ηTc (i.e., ηTc = η2c +η1c) for q = 0.1
and � = 0.3, 0.4, 0.5, and compared them with the results presented in [14]. We found that
the HRT results for ηTc , not reported here, appear nearly independent of �, unlike the MC and
Barboy–Gelbart predictions. It is likely that this discrepancy should be at least partially traced
back to the fact that, unlike HRT, both the MC simulations and the calculations based on the
Barboy–Gelbart equation were performed on the two-component mixture rather than on the
one-component fluid with an effective potential.

4. An extreme case of nonadditivity: the Asakura–Oosawa model

4.1. Introduction

It is well known that the addition of polymer to a suspension of spherical colloids can cause
an effective attraction between particles [43]. A very simple model for this situation was
proposed by Asakura and Oosawa [44] (AO model) and independently by Vrij [45]. The AO
model represents an extreme case of nonadditivity. In this model the polymers are assumed to
be noninteracting, freely interpenetrable coils with a radius of gyration Rg much smaller than
the size of the colloidal particles. The polymer–polymer interaction is zero. However, they are
excluded from the colloids to a certain centre-of-mass distance σcp. Therefore, with respect to
their interaction with colloidal particles of radius σc/2, the polymer molecules are assumed to
behave as hard spheres of radius σp/2 = Rg, the diameter of the colloid–polymer interaction
being σcp = (σc + σp)/2. A simple expression results for the effective (pair) interaction of
hard-sphere particles in the presence of added free polymer:

βvAO(r) =




∞ r < σc

−πσ 3
p zp

6

(1 + q)3

q3

[
1 − 3r

2(1 + q)σc
+

r3

2(1 + q)3σ 3
c

]
σc < r < σc + σp

0 r > σc + σp

(13)

where zp is the fugacity of a pure ideal polymer system and q = σp/σc. The origin of the
attraction outlined above has been called ‘volume restriction’ or ‘osmotic depletion’, and the
resulting force ‘depletion force’. Notice that, for given zp and q , the strength of the attractive
interaction is proportional to the volume of the intersection region among the shells of excluded
volume for the colloidal spheres. Simple geometrical arguments show that for q = σp

σc
< 0.154

three-body and higher-body terms are equal to 0 [28]. For larger values of the size ratio, a
multiple overlap of the depletion zones is possible, and consequently the interaction also
presents many-body terms. In spite of its simplicity, the effective pair potential of equation (13)
captures the main features of the experimental phase diagrams of polymer–colloid mixtures,
namely the disappearance of fluid–fluid phase separation into the fluid–solid coexistence region
for small values of the polymer–colloid size ratio q [46]. As q is increased and the depletion
potential becomes longer ranged, a stable fluid–fluid phase transition occurs [28, 47, 48].
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Figure 7. Fluid–fluid (HRT) and fluid–solid (HRT and perturbation theory) transition lines of a
colloid–polymer mixture described by means of the AO pair interaction (q = 0.25).

If we consider the general equation (11) for nonadditive mixtures, the AO model
corresponds to σ22 = 0 and � = q . However, we remark that in this limit the effective
potential (12) does not yield equation (13) for the AO potential. The reason for this is that
equation (12) is based on the Derjaguin approximation, unlike equation (13). Therefore, in the
above limit it reduces to the Derjaguin approximation for the AO potential between hard-sphere
colloids.

Here we apply HRT to the two-body AO potential (13) and compare our results with those
obtained by Dijkstra et al [12] by MC simulations and thermodynamic perturbation theory.
Unlike the results discussed in sections 3.2, 3.3, these studies were performed on the same
potential vAO that we considered, rather than on the two-component mixture. This allows for
a more direct comparison with the HRT results.

4.2. Phase diagram

We first performed HRT calculations for a small value of the size ratio, in a region where we
expect the fluid–fluid phase separation to be metastable with respect to freezing. As the first
case investigated we present in figure 7 the phase diagram for q = 0.25 in the ηr

p–ηc plane, ηr
p

and ηc being respectively the reservoir packing fraction of polymer and the packing fraction
of colloid. As introduced above, we calculated the fluid–solid equilibrium by supplementing
HRT with thermodynamic perturbation theory for the solid phase. The metastability of the
fluid–fluid coexistence curve with respect to freezing is in agreement with the trend evidenced
in [12].

As the second case we calculated the phase diagram for q = 0.4. The HRT results agree
fairly well with the simulation performed by Dijkstra et al [12]. From figure 8 we observe that
both simulation and HRT predict a metastable fluid–fluid phase transition, unlike perturbation
theory. We emphasize that HRT gives a critical point which lies slightly above the fluid–solid
line. This could in principle also be the case for MC simulation, considering that there are
no values of the critical packing fraction in the reservoir between 0.2 � ηc � 0.35. The
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Figure 8. Fluid–fluid (HRT) and fluid–solid (HRT and perturbation theory) transition lines of a
colloid–polymer mixture described by means of the AO pair interaction, q = 0.4 (squares). In the
figure we also present HRT results on the coexistence curve calculated without the core condition
(crosses). (a) We compare our results with perturbation theory results and MC simulation results
by Dijkstra et al [12]. (b) Magnification of the region of coexistence as calculated by HRT.

difference between the HRT and the MC result for ηr,crit
p is smaller than 7.5%. According to

HRT, the fluid–fluid transition becomes stable just above q = 0.4, in good agreement with the
MC results, which locate the stability threshold at q � 0.45 [12]. If perturbation theory for
both the fluid and the solid phase is used, the threshold is instead located at q � 0.31 [12].
The crossover from metastable to stable fluid–fluid phase separation on increasing q has been
observed in experiments on colloid–polymer mixtures and in simulations of hard spheres and
lattice polymers [12, 46, 49, 50].

We then consider q = 0.6: in this case also the HRT results are in much better agreement
with the simulations performed by Dijkstra et al [12] than the predictions of perturbation theory
(see figure 9). For this value of q , simulation, perturbation theory, and HRT all give a stable
fluid–fluid phase transition. However, the critical value of ηr

p predicted by HRT is considerably
higher, and closer to the MC value, than that of perturbation theory, because of the inclusion
of fluctuations.
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Figure 9. Fluid–fluid (HRT) and fluid–solid (HRT and perturbation theory) transition lines of a
colloid–polymer mixture described by means of the AO pair interaction (q = 0.6). In the figure
we compare our results with perturbation theory results and MC simulation results by Dijkstra et al
[12]. Symbols as in figure 8.

In figure 10 we show the comparison between our HRT results and the simulation
performed by Dijkstra et al [12] for q = 0.8. Also in this case the agreement for the fluid–fluid
transition is very good. On the other hand, the curve obtained via perturbation theory differs
appreciably from HRT and MC simulation results. We must point out that, for this value of
q , we were not able to determine the fluid–solid equilibrium lines for the range of ηr

p shown
in the figure, because the fluid and solid branches of the equation of state as given by HRT
and perturbation theory respectively did not cross in the P–µ plane, at least for the version
of perturbation theory used here, where the second-order term was estimated by equation (8).
We did not try to improve the accuracy of the perturbation theory calculation so as to recover
the freezing transition, since we were interested in this relatively large value of q mainly
in connection with the critical behaviour of the fluid–fluid transition discussed in the next
subsection.

Finally, in table 2 we showed the critical values of the packing fractions of the big spheres
and small spheres in the reservoir for q = 0.25, 0.4, 0.6, 0.8.

We can make a few remarks about all the AO cases investigated: first of all, we note that
here the packing fraction of the small spheres in the reservoir has the same role as an inverse
temperature. In the case of a Lennard-Jones potential, the effect of fluctuations as embodied
in HRT gives a lower value of the critical temperature with respect to the mean-field approach
(MF). Therefore, in this case it gives a value of ηr,crit

p higher than the mean-field one. Moreover,
HRT gives a coexistence curve very flat compared to the MF results. The curves obtained by
means of MC simulation do not present enough points in the critical region to be a relevant
term of comparison about the curvature of the coexistence curve. We will consider this point
in more detail in the next section. Second, we observe from the figures that the critical packing
fraction of polymers in the reservoir increases on increasing the size ratio q , while the critical



788 F Lo Verso et al

0.0 0.2 0.4 0.6ηc

0.2

0.4

0.6

0.8

η
p
r

F+F

F+S

F

Figure 10. Fluid–fluid (HRT) and fluid–solid (HRT and perturbation theory) transition lines of a
colloid–polymer mixture described by means of the AO pair interaction (q = 0.8). In the figure
we compare our results with perturbation theory results and MC simulation results by Dijkstra et al
[12]. Symbols as in figure 8.

Table 2. Critical values of the packing fraction of the big spheres ηc and of the small spheres
in the reservoir ηr

p of the AO model for a diameter ratio q = 0.25, 0.4, 0.6, 0.8. For q = 0.6 we
also calculate the value of the packing fraction of the triple point ηr

2t and η1t. The triple point for
q = 0.8 is not shown because for this value of q we were unable to locate the freezing transition
by the solid perturbation theory described in the text.

q η
r,crit
p ηcrit

c η
r,t
p ηt

c

0.25 0.4123 0.213 — —
0.4 0.4404 0.225 — —
0.6 0.4736 0.216 0.617 0.467
0.8 0.4825 0.190

packing fraction of colloids does not change very much as a function of q . Third, we point
out that the agreement between HRT results and MC simulations is good overall and that HRT
significantly improves over perturbation theory. However, the discrepancies between HRT and
simulation data are larger than those found in previous investigations on the Lennard-Jones
potential [22], especially as the polymer–colloid size ratio q decreases. This should be traced
back to the fact that, as stated in section 2.1, the approximate closure for the correlations that
we used in our HRT calculation is more appropriate for Lennard-Jones-like potentials rather
than for the short-ranged, strongly attractive forces typical of depletion interactions. In fact,
even for the largest diameter ratio that we considered, namely q = 0.8, the profile of the AO
potential is quite different from that expected for a simple atomic fluid. In figure 11 we compare
the AO potential for q = 0.8 to a Yukawa potential vyuk(r) = −ε exp[−z(r − 1)]/r with an
inverse-range parameter z = 1.8, which is an appropriate value to mimic a Lennard-Jones-like
interaction. The polymer packing fraction ηr

p of the AO potential and the temperature of the
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Figure 11. Comparison between the AO potential for q = 0.8 and the Yukawa potential with an
inverse-range parameter z = 1.8, which is an appropriate value to mimic a Lennard-Jones-like
interaction. The values of the polymer packing fraction ηr

p = 0.73 and the reduced temperature
kBT/ε = 0.7 both refer to triple-point conditions.

Yukawa potential have been set so as to be close to triple-point conditions. We checked that
the integrated intensities of the interactions are nearly the same in the two cases. However, the
AO interaction is much deeper and narrower. This statement can be made more quantitative by
considering two definitions of the potential range recently proposed in the literature in order to
give this parameter an unambiguous meaning even for different interaction profiles. In [51],
Noro and Frenkel introduced a reduced temperature and a reduced second virial coefficient
by rescaling the temperature T and the second virial coefficient B2(T ) by the depth of the
attractive potential well and by the hard-sphere value of B2 respectively, and proposed to define
the potential range as the width δ of the square-well potential which gives the same reduced
B2 at the same reduced T as the original potential. The range thus obtained depends on the
temperature or, for the depletion interaction considered here, on ηr

2, since this parameter affects
the depth of the attractive well. A different prescription was adopted by Louis [52] on the basis
of the isosbestic points, i.e., values of the wavevector k such that, for a given interaction, the
structure factor at fixed density is approximately left unaltered in a wide temperature interval.
Louis suggested to identify the potential range as the amplitude δ of the square-well potential
whose smallest isosbestic point, in units of the reciprocal of the hard-sphere diameter,coincides
with that of the interaction in hand. According to both of these prescriptions, for the parameter
choice corresponding to figure 11, the range of the Yukawa potential is nearly twice that of
the AO potential. This feature is bound to affect the accuracy of the closure that we used
in our HRT calculation, especially for smaller values of q . In this respect, it is particularly
important to recall that for hard-core potentials which contain deep and narrow attractive wells
the requirement that the particles do not overlap because of the excluded-volume effect is
expected to play a more important role than in interactions with smooth, longer-ranged tails.
As an example, in figure 8 we have also plotted the fluid–fluid coexistence curve predicted
by HRT when the core condition is disregarded altogether: this considerably deviates from
the MC simulation data, especially as far as the high-density branch is concerned. Therefore,
imposing the core condition clearly improves our results. However, we must point out that
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in the closure currently adopted within HRT such a condition has been implemented in an
approximate fashion, and that the approximations involved are bound to become less and less
accurate as the interaction becomes more sticky. In fact, we found that for very small values of
the size ratio, namely q � 0.2, our HRT calculation failed to converge before the occurrence
of fluid–fluid phase separation. The limits of this treatment also clearly appear in the two-body
correlations: as the polymer packing fraction ηr

p increases, we found that not only is the core
condition poorly satisfied, but the overall profile of the radial distribution function g(r) shows
appreciable discrepancies with respect to both MC results [12] and the predictions of integral-
equation theories such as PY [12] and MHNC. Improving the core condition within HRT is
a nontrivial matter, but some preliminary investigations show that this is indeed possible, and
will not only increase the accuracy of the correlations, but also give even better phase diagrams
and thermodynamics. We propose to report on these developments in the future.

Experiments on the phase behaviour of sterically stabilized polymethylmethacrylate and
nonadsorbing polystyrene in decalin show a trend similar to that of the AO potential [12, 46].
However, the experimental value q � 0.25 of the metastability threshold is rather lower than
the value q � 0.4 of the AO potential obtained by HRT as well as by MC simulations by
Dijkstra et al [12]. A possible source of the discrepancy might be the presence of many-
body terms not accounted for in the AO potential. As the diameter ratio q increases, these
contributions to the effective interaction between colloidal particles strongly affect the phase
diagram of the mixture: by comparing the MC results by Vink et al [17] for the AO mixture
with q = 0.8 to those previously obtained for the purely two-body potential equation (13) [12],
it appears that disregarding many-body contributions leads to an underestimation of the critical
polymer packing fraction ηr,crit

p of nearly 40%. On the other hand, the free-volume approach
which incorporates some many-body effects, as discussed in [12], predicts a value of the
metastability threshold higher than the experimental one, while direct simulations of a lattice
model of the AO interaction estimate the value of crossover near 0.45 [50]. Other features
of real systems which are not taken into account in the AO model include the nonideality
or deformability of the polymers and the polydispersity of the colloids and polymers. These
effects are the object of many investigations. In any case, we emphasize that the main purpose
of the present work is to test the ability of HRT to describe the phase behaviour of asymmetric,
nonadditive hard-sphere mixtures starting from very simple models of the pair interaction,
which have already been extensively studied by simulation and other liquid-state approaches.
In order to compare our results directly with experiments, more accurate forms of the effective
interaction will have to be employed.

4.3. Critical fluctuations

The critical behaviour of colloid–polymer mixtures has not received much attention so far.
Lately, this issue has been investigated by accurate finite-size scaling Monte Carlo studies of
the two-component AO model with a diameter ratio q = 0.8 [16, 17], which give evidence
that this system belongs to the Ising universality class. We remark that within the description
adopted here, where the two-component mixture is replaced by a one-component fluid with the
two-body potential (13), the critical behaviour is necessarily the same as that of a simple fluid,
provided the inverse temperature is replaced by the fugacity zp (or, equivalently, the packing
fraction ηr

p) of the polymer in the reservoir as the criticality-driving field. Therefore, Ising
criticality is to be expected if the effective-potential description is adopted. We recall that in
thermal binary mixtures, which also belong to the Ising universality class, the critical exponents
are generally ‘renormalized’ with respect to their usual Ising values by a factor 1/(1−α) [53].
On the other hand, we do not expect exponent renormalization to occur in the case considered
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here. In fact, as pointed out above, the two-body potential (13) describes exactly the interactions
between colloidal particles for polymer-to-colloid size ratio q < 0.154. Therefore, in this
regime the colloid will certainly display standard Ising-like critical behaviour, if η

p
r is used as

the thermal field. More generally, in thermal binary mixtures exponent renormalization comes
along as a consequence of Fisher’s assumption [53], according to which the singular part of the
grand potential per unit volume ω of the binary fluid can be expressed via the corresponding
quantity ω0 of the one-component fluid as ω(µ1, µ2, T ) = ω0(T ∗(µ1, µ2, T ), µ∗(µ1, µ2, T )),
where the ‘effective’ temperature T ∗ and chemical potential µ∗ are analytic functions of the
temperature T and chemical potentials µ1, µ2 of the two species. However, the AO model
is an athermal system, so that in the above expression the temperature is absent, and its role
is played by one of the chemical potentials. This form of ω is not expected to give exponent
renormalization since, in terms of Fisher’s original formulation, there is no ‘hidden’ field left.

We now consider the HRT results for the critical behaviour of the AO model. It is
worthwhile recalling that HRT yields nontrivial values for the critical exponents. Within
the present formulation of HRT, the exponents are correct up to first order of the expansion
in powers of ε = 4 − d , d being the dimensionality of the system [15]. Higher orders of the
expansion are not correctly reproduced, because equation (4) implies that the direct correlation
function in momentum space is an analytic function of the wavevector k even at the critical
point, CQ(k) ∼ k2, thereby setting the critical exponent η to zero. Even so, the description
of criticality is considerably more accurate than that of thermodynamic perturbation theory
and integral-equation approaches. First, we compare the HRT coexistence curve for q = 0.8
with the finite-size scaling results by Vink et al [16] for the same value of q . These authors
simulated the true two-component AO model, thereby taking many-body contributions into
account. As a consequence, as observed in section 4.2, the location of the critical point differs
considerably from that of the purely two-body interaction, equation (13). Specifically, the
HRT prediction for the critical point is ηr,crit

p = 0.483, ηcrit
c = 0.190, while the finite-size

scaling analysis of the AO binary system gives ηr,crit
p = 0.766, ηcrit

c = 0.134 [17]. However,
this is not expected to affect the universal features of the transition. We then compared our
results for the coexistence curve to those of [16] by using reduced quantities in both cases.
Figure 12 shows an enlargement of the critical region on a log–log scale. The HRT results
for the difference of the reduced densities of the colloid on the ‘liquid’ and ‘vapour’ branches
of the coexistence curve M = (ηl

c − ηv
c)/(2ηcrit

c ) as a function of the reduced ‘temperature’
t = (ηr

p − ηr,crit
p )/ηr,crit

p are compared with the asymptotic power law M ∼ A tβ obtained from
finite-size scaling. The critical exponent β of the finite-size scaling analysis coincides with the
generally accepted value β = 0.324 for the Ising universality class in three dimensions [16].
A linear fit of our results in the range −5 � log(t) � −4 gives a power-law behaviour with
β = 0.37. The asymptotic value of the exponent β predicted by HRT has been obtained by
linearizing the renormalization-group flow induced by the HRT evolution equation (3) in the
neighbourhood of the critical point and is given by β = 0.345 [15].

In figure 13 we consider the behaviour of the reduced compressibility χred of the colloid on
the critical isochore in the one-phase region. As before, we report both the HRT results and the
asymptotic power law obtained from finite-size scaling, χred ∼ B|t|−γ , γ = 1.239 [16]. The
HRT asymptotic value for γ is γ = 1.378, about 10% larger than the correct one [15]. A linear
fit of the data shown in the figure in the range −5.5 � log(t) � −4.5 gives γ = 1.37. For HRT,
we have also plotted the results for the correlation length ξ which governs the decay of the corre-
lations near the critical point. The divergence of ξ on the critical isochore asymptotically close
to the critical point is described by a critical exponent ν according to the power law ξ ∼ C|t|−ν .
As recalled above, the current implementation of HRT necessarily gives a vanishing critical
exponent η. Therefore, the critical exponent relation γ = (2 − η)ν becomes just ν = γ /2.
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Figure 12. Coexistence curve of the AO model for q = 0.8 in the critical region. The quantities ηl
c

and η
g
c are the packing fractions of the colloid on the high- and low-density branch of the coexistence

curve respectively. Solid curve and full circles: HRT results for the AO fluid with the two-body
potential (13). Dotted curve: asymptotic power law for the true binary AO mixture determined via
finite-size scaling [16].

We point out that the HRT results in the critical region shown here contain no free
parameters. Therefore, we regard the agreement with the asymptotic power-law behaviour
obtained from finite-size scaling as quite satisfactory. On the other hand, while the power-law
exponents are universal, the amplitudes are not, and are expected to be affected by many-body
terms which are disregarded in the effective one-component description. Therefore, a more
cogent test of the HRT would require simulations in the critical region for a smaller value of
q , such that many-body terms are less important.

It is interesting to compare the HRT results for the reduced compressibility and the
correlation length of the AO fluid with the corresponding quantities for the LJ-like hard-sphere
Yukawa potential with inverse range z = 1.8 shown in figure 11. For the latter interaction,
the crossover region from mean-field to Ising-like critical behaviour is appreciably larger than
for the AO potential: for instance, a linear fit on a log–log scale for the compressibility of the
Yukawa fluid in the same reduced temperature range as used for the AO fluid gives γ = 1.36,
which is farther from the HRT asymptotic value than the AO result. Similarly, the deviation
of the log–log plot from linearity is stronger for the Yukawa fluid. This can be more easily
appreciated in the inset of figure 13, which shows the effective exponents γeff , i.e., the local
slope of the log–log plot of χred versus t . Such a behaviour is most likely due to the longer
range of the Yukawa interaction. According to a general renormalization-group result [54],
this pushes the asymptotic region where Ising-like critical behaviour is observed to smaller
reduced temperatures.

One of the quantities most directly accessible to experiments is the structure factor
S(k). This is shown in figure 14 for ηc = ηcrit

c and two values of ηr
p close to ηr,crit

p . For
these near-critical states, changing ηr

p affects mainly the long-range structure because of the
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Figure 13. Reduced compressibility χred (upper curves) and correlation length ξ (lower curves) for
the AO fluid with q = 0.8 and the hard-sphere Yukawa fluid with inverse-range parameter z = 1.8.
Solid curve and full circles: HRT results for the AO fluid with the two-body potential (13). Dashed
curve and open squares: HRT results for the hard-sphere Yukawa fluid. Dotted curve: asymptotic
power law for the reduced compressibility of the AO mixture determined via finite-size scaling [16].
For the AO model, the reduced temperature t is defined as t = |ηr

p −η
r,crit
p |/ηr,crit

p . For the Yukawa
fluid, one has t = (T − Tc)/Tc. Inset: effective exponent γeff according to HRT for the AO fluid
(full circles) and the hard-sphere Yukawa fluid (open squares).

divergence of χred = S(k = 0) at the critical point, while the short-range structure is nearly
unaffected.

We conclude this section by recalling that critical fluctuations in colloidal systems are
expected to play an important role even when the fluid–fluid transition is metastable with
respect to the fluid–solid one as a consequence of the colloid–colloid interaction being very
short ranged. In fact, it has been suggested [55] that the large density fluctuations induced by
a metastable critical point can lower the free energy barrier for nucleation of the solid in the
fluid phase, and therefore greatly enhance the nucleation rate. This is another situation where
the ability of HRT to deal realistically with criticality might be useful.

5. Conclusions

In this paper we have considered fluids modelled by nonadditive highly asymmetric HS
mixtures. The main interest of this study lies in the possibility of exploring a wide variety of
attractive or repulsive generalized depletion potential shapes and associated phase behaviour,
by a proper tuning of the nonadditivity. We have focused for the moment on the effect of a
positive nonadditivity. In this context our main purpose is to test the hierarchical reference
theory in order to identify a good theoretical tool to study the very deep and narrow attraction,
characteristic of the effective interactions in these mixtures, and to describe the fluid–fluid and
fluid–solid phase diagram. This theory has been especially devised to deal with the onset of
long-range correlations which play a crucial role in criticality and phase separation. In this
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Figure 14. Structure factor of the AO
fluid with the two-body potential (13)
and q = 0.8 for two states in the
neighbourhood of the critical point.

respect, it is in general more accurate than usual fluid-state theories. This is a first investigation
in the possible involvement and development of HRT theory to study these deep and short-
ranged interactions. Consequently, we started utilizing a one-component HRT on very simple
models for the pair interaction, which anyway contain most of the features which could cause
some loss of accuracy of the theory. For these simple models our results could be compared
with those previously obtained in the literature, either via simulations or other theoretical
approaches. As introduced above, at the present stage the expression for the correlations (4)
that we used in the HRT equation is the same one that we employed for Lennard-Jones-like
interactions.

First of all we studied a very general case: we considered an effective pair interaction
between big particles which takes into account the interaction between the small spheres in
solution, and the nonadditivity can be tuned. Our predictions for the stability or metastability
of the fluid–fluid phase transition with respect to freezing are in qualitative agreement with
those previously obtained in [7], where a two-component perturbation theory was used for the
fluid phase.

Second, we applied HRT to the two-body AO potential equation (13) and compared
our results with those found by Dijkstra et al [12] by MC simulations and thermodynamic
perturbation theory. Both our results and those in [12] start from the same effective pair
interaction between colloidal particles. We performed HRT calculations for several values of
the size ratio and we found a very good agreement with simulation results. Moreover, HRT
significantly improves over perturbation theory in the fluid region. Notice that the agreement
increases on increasing the size ratio. This is due to the fact that the closure employed in this
study is tailored to relatively long-ranged potentials.

We have to remark on some details related to our analysis: in the two cases of nonadditivity
that we considered we found that it is very important to impose the core condition in the HRT
scheme. However, in the closure currently adopted within HRT such a condition has been
implemented by resorting to a number of approximations, which become less accurate as the
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interaction becomes deeper and narrower. Actually, for very small values of the size ratio,
e.g. q � 0.2 for the AO pair interaction, our numerical algorithm failed to converge before the
occurrence of fluid–fluid phase separation. The limits of this treatment clearly appear in the
two-body correlations: the current implementation of HRT does not describe the correlations
at the same level of accuracy as the thermodynamics, and integral-equation approaches such
as the PY [12] or the MHNC theories provide better results for the two-body radial distribution
function and structure factor. In this respect, it would be interesting to compare the HRT results
for the phase diagram with those of integral-equation theories. However, we remark that these
theories usually suffer from a lack of solutions close to the critical point which makes available
to them only a portion of the fluid–fluid phase boundary, while HRT remains convergent even
arbitrarily close to the critical point. In fact, one of the most interesting features of HRT is
that it gives a realistic treatment of critical fluctuations, with nonclassical values of the critical
exponents and rigorously flat isotherms in the region of phase coexistence. Moreover, we
stress here that the CPU time we need to calculate the fluid–fluid phase diagram with HRT is
considerably small. Indeed, for a density grid of about 1000 points, a full isotherm takes less
than 5 minutes on an average desktop workstation, the time scaling approximately in a linear
way with the density mesh. Therefore, about 1 h CPU time is enough to obtain an accurate
mapping of the coexistence curve.

We point out that here we are not interested in discussing the validity of the two-body pair
interaction. Indeed, it is known that the validity of the effective pair interaction is questionable
for size ratio bigger than 0.154. Rather, we are interested in checking HRT theory; for this
purpose we considered the cases for which our results could be compared with available MC
simulation data for the thermodynamics of the hard-sphere mixtures. A further step could be
to employ a more accurate form of the pair interaction for these systems and to compare our
predictions more directly with experiments. In this respect, nonadditive hard-sphere mixtures
can be of interest in many different situations since,as proposed by Louis et al [7], nonadditivity
can be used to model extra interactions between the species besides that of purely excluded
volume. Before doing this, however, our next task is improving the closure relation used
in HRT so as to obtain an approach which is as accurate for the correlations as it is for the
thermodynamics, even in the presence of short-ranged and strongly attractive interactions.
This is a work in progress.
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